Scientists develop early stage human stem cell lines

As well as a potential source of stem cells for use in regenerative medicine, the technique could open up new avenues of research into disorders such as Down’s syndrome.

Human pluripotent stem cells for use in regenerative medicine or biomedical research come from two sources: embryonic stem cells, derived from fertilised egg cells discarded from IVF procedures; and induced pluripotent stem cells, where skin cells are reprogrammed to a pluripotent form.

These cells are alreadyPrimedfor differentiation into specific cell types.

In contrast, all instructions have been erased in naïve cells, which may make it easier to direct them into any cell type of interest.

Recently naïve-like human induced pluripotent stem cells have been created by reprogramming but it has been unknown whether they can also be obtained directly from the human embryo.

When an egg cell is fertilised by a sperm, it begins to divide and replicate before the embryo takes shape.

The blastocyst comprises three cell types: cells that will develop into the placenta and allow the embryo to attach to the womb; and cells that form theyolk sac‘, which provides nutrients to the developing foetus; and theepiblastcomprising the naïve cells that will develop into the future body.

In research published today in the journal Stem Cell Reports, scientists from the Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute managed to remove cells from the blastocyst at around day six and grow them individually in culture.

Until now it hasn’t been possible to isolate these naïve stem cells, even though we’ve had the technology to do it in mice for thirty years leading some people to doubt it would be possible,” explains Ge Guo, the study’s first author, “But we’ve managed to extract the cells and grow them individually in culture. Naïve stem cells have many potential applications, from regenerative medicine to modelling human disorders.”

Naïve pluripotent stem cells in principle have no restrictions on the types of adult tissue into which they can develop, which means they may have promising therapeutic uses in regenerative medicine to treat devastating conditions that affect various organs and tissues, particularly those that have poor regenerative capacity, such as the heart, brain and pancreas.

Dr Jenny Nichols, joint senior author of the study, says that one of the most exciting applications of their new technique would be to study disorders that arise from cells that contain an abnormal number of chromosomes.

Even in manynormalearly-stage embryos, we find several cells with an abnormal number of chromosomes,” explains Dr Nichols.

Because we can separate the cells and culture them individually, we could potentially generatehealthyandaffectedcell lines. This would allow us to generate and compare tissues of two models, onehealthyand one that is genetically-identical other than the surplus chromosome. This could provide new insights into conditions such as Down’s syndrome.”

Naïve pluripotent stem cells derived directly from isolated cells of the human inner cell mass; Stem Cell Reports; e-pub 3 March 2015.